
International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 428
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

A Review of Data Visualization Methods
in Python

USHA MANJARI SIKHARAM

ABSTRACT

Data visualization involves presenting data in graphical or pictorial form which makes

the information easy to understand. It helps to explain facts and determine courses of

action. It will benefit any field of study that requires innovative ways of presenting

large, complex information. The advent of computer graphics has shaped modern

visualization. This paper presents a Python Data Visualization Libraries.

Keywords: Data visualization, Information Visualization, Scientific Visualization, Big

data.

1. INTRODUCTION

Data visualization is an important skill in

applied statistics and machine learning.

Statistics does indeed focus on quantitative

descriptions and estimations of data. Data

visualization provides an important suite

of tools for gaining a qualitative

understanding. This can be helpful when

exploring and getting to know a dataset

and can help with identifying patterns,

corrupt data, outliers, and much more.

With a little domain knowledge, data

visualizations can be used to express and

demonstrate key relationships in plots and

charts that are more visceral to yourself

and Stakeholders than measures of

association or significance. We'll learn

more about how to visualize data using the

Python programming language below.

 Python offers multiple great

graphing libraries that come packed with

lots of different features. No matter if you

want to create interactive, live or highly

customized plots python has an excellent

library for you.

There are five key plots that you

need to know well for basic data

visualization. They are:

1. Line Plot

2. Bar Chart

3. Histogram Plot

4. Box and Whisker Plot

5. Scatter Plot

With knowledge of these plots, you can

quickly get a qualitative understanding of

most data that you come across.

1.1 Matplotlib

Matplotlib is a python two-dimensional

plotting library for data visualization and

creating interactive graphics or plots.

Using python’s matplotlib, the data

visualization of large and complex data

becomes easy.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 429
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

1.2 Matplotlib Advantages

There are several advantages of using

matplotlib to visualize data.

 A multi-platform data visualization tool

built on the numpy and sidepy

framework. Therefore, it's fast and

efficient.

 It possesses the ability to work well with

many operating systems and graphic

back ends.

 It possesses high-quality graphics and

plots to print and view for a range of

graphs such as histograms, bar charts,

pie charts, scatter plots and heat maps.

 With Jupyter notebook integration, the

developers have been free to spend their

time implementing features rather than

struggling with compatibility.

 It has large community support and

cross-platform support as it is an open

source tool.

 It has full control over graph or plot

styles such as line properties, thoughts,

and access properties.

The context can be accessed via functions

on pyplot. The context can be imported as

follows

from matplotlib import pyplot

There is some convention to import this

context and name it plt; for example:

import matplotlib.pyplot as plt

We will not use this convention; instead

we will stick to the standard Python

import convention.

Charts and plots are made by making and

calling on context; for example:

pyplot.plot(...)

Elements such as axis, labels, legends, and

so on can be accessed and configured on

this context as separate function calls.

The drawings on the context can be shown

in a new window by calling the show()

function:

pyplot.show()

Alternately, the drawings on the context

can be saved to file, such as a PNG

formatted image file. The savefig()

function can be used to save images.

pyplot.savefig('my_image.png')

This is the most basic crash course for

using the matplotlib library.

1.3 Line Plot

A line plot is generally used to present

observations collected at regular intervals.

The x-axis represents the regular interval,

such as time. The y-axis shows the

observations, ordered by the x-axis and

connected by a line. A line plot can be

created by calling the plot() function and

passing the x-axis data for the regular

interval, and y-axis for the observations.

create line plot

pyplot.plot(x, y)

IJSER

http://www.ijser.org/
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 430
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

Line plots are useful for presenting time

series data as well as any sequence data

where there is an ordering between

observations.

The example below creates a sequence of

100 floating point values as the x-axis and

a sine wave as a function of the x-axis as

the observations on the y-axis. The results

are plotted as a line plot.

example of a line plot

from numpy import sin

from matplotlib import pyplot

consistent interval for x-axis

x = [x*0.1 for x in range(100)]

function of x for y-axis

y = sin(x)

create line plot

pyplot.plot(x, y)

show line plot

pyplot.show()

Running the example creates a line plot

showing the familiar sine wave pattern on

the y-axis across the x-axis with a

consistent interval between observations.

1.4 Bar Chart

A bar chart is generally used to present

relative quantities for multiple categories.

The x-axis represents the categories and

are spaced evenly.

The y-axis represents the quantity for each

category and is drawn as a bar from the

baseline to the appropriate level on the y-

axis.

A bar chart can be created by calling the

bar() function and passing the category

names for the x-axis and the quantities for

the y-axis.

create bar chart

pyplot.bar(x, y)

Bar charts can be useful for comparing

multiple point quantities or estimations.

The example below creates a dataset with

three categories, each defined with a string

label. A single random integer value is

drawn for the quantity in each category.

example of a bar chart

from random import seed

from random import randint

from matplotlib import pyplot

seed the random number generator

seed(1)

names for categories

x = ['red', 'green', 'blue']

quantities for each category

y = [randint(0, 100), randint(0, 100),

randint(0, 100)]

create bar chart

pyplot.bar(x, y)

show line plot

IJSER

http://www.ijser.org/
https://machinelearningmastery.com/how-to-generate-random-numbers-in-python/

International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 431
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

pyplot.show()

Running the example creates the bar

chart showing the category labels on

the x-axis and the quantities on the y-

axis.

Example of a Bar Chart

1.5 Histogram Plot

A histogram plot is generally used to

summarize the distribution of a data

sample.

The x-axis represents discrete bins or

intervals for the observations. For example

observations with values between 1 and 10

may be split into five bins, the values [1,2]

would be allocated to the first bin, [3,4]

would be allocated to the second bin, and

so on.

The y-axis represents the frequency or

count of the number of observations in the

dataset that belong to each bin.

Essentially, a data sample is transformed

into a bar chart where each category on the

x-axis represents an interval of observation

values.

A histogram plot can be created by calling

the hist() function and passing in a list or

array that represents the data sample.

create histogram plot

pyplot.hist(x)

Histograms are valuable for summarizing

the distribution of data samples.

The example below creates a dataset of

1,000 random numbers drawn from a

standard Gaussian distribution, then plots

the dataset as a histogram.

example of a histogram plot

from numpy.random import seed

from numpy.random import randn

from matplotlib import pyplot

seed the random number generator

seed(1)

random numbers drawn from a Gaussian

distribution

x = randn(1000)

create histogram plot

pyplot.hist(x)

show line plot

pyplot.show()

Running the example, we can see that the

shape of the bars shows the bell-shaped

curve of the Gaussian distribution. We can

see that the function automatically chose

the number of bins, in this case splitting

the values into groups by integer value.

Example of a Histogram Plot

IJSER

http://www.ijser.org/
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 432
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

1.6 Box and Whisker Plot

A box and whisker plot, or box plot for

short, is generally used to summarize the

distribution of a data sample.

The x-axis is used to represent the data

sample, where multiple box plots can be

drawn side by side on the x-axis if desired.

The y-axis represents the observation

values. A box is drawn to summarize the

middle 50% of the dataset starting at the

observation at the 25th percentile and

ending at the 75th percentile. This is called

the interquartile range, or IQR. The

median, or 50th percentile, is drawn with a

line.

Lines called whiskers are drawn extending

from both ends of the box calculated as (1.5

x IQR) to demonstrate the expected range

of sensible values in the distribution.

Observations outside the whiskers might

be outliers and are drawn with small

circles.

Box plots can be drawn by calling

the boxplot() function passing in the data

sample as an array or list.

create box and whisker plot

pyplot.boxplot(x)

Boxplots are useful to summarize the

distribution of a data sample as an

alternative to the histogram. They can help

to quickly get an idea of the range of

common and sensible values in the box

and in the whisker respectively. Because

we are not looking at the shape of the

distribution explicitly, this method is often

used when the data has an unknown or

unusual distribution, such as non-

Gaussian.

The example below creates three boxplots

in one chart, each summarizing a data

sample drawn from a slightly different

Gaussian distribution. Each data sample is

created as an array and all three data

sample arrays are added to a list that is

padded to the plotting function.

example of a box and whisker plot

from numpy.random import seed

from numpy.random import randn

from matplotlib import pyplot

seed the random number generator

seed(1)

random numbers drawn from a Gaussian

distribution

x = [randn(1000), 5 * randn(1000), 10 *

randn(1000)]

create box and whisker plot

pyplot.boxplot(x)

show line plot

pyplot.show()

Running the example creates a chart

showing the three box and whisker plots.

We can see that the same scale is used on

the y-axis for each, making the first plot

look squashed and the last plot look

spread out.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Interquartile_range
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html

International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 433
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

In this case, we can see the black box for

the middle 50% of the data, the orange line

for the median, the lines for the whiskers

summarizing the range of sensible data,

and finally dots for the possible outliers.

 Example of a Box and Whisker Plot

1.6 Scatter Plot

A scatter plot (or ‘scatterplot’) is generally

used to summarize the relationship

between two paired data samples.

Paired data samples means that two

measures were recorded for a given

observation, such as the weight and height

of a person.

The x-axis represents observation values

for the first sample, and the y-axis

represents the observation values for the

second sample. Each point on the plot

represents a single observation.

Scatter plots can be created by calling

the scatter() function and passing the two

data sample arrays.

create scatter plot

pyplot.scatter(x, y)

Scatter plots are useful for showing the

association or correlation between two

variables. A correlation can be quantified,

such as a line of best fit, that too can be

drawn as a line plot on the same chart,

making the relationship clearer.

A dataset may have more than two

measures (variables or columns) for a

given observation. A scatter plot matrix is

a cart containing scatter plots for each pair

of variables in a dataset with more than

two variables.

The example below creates two data

samples that are related. The first is a

sample of random numbers drawn from a

standard Gaussian. The second is

dependent upon the first by adding a

second random Gaussian value to the

value of the first measure.

example of a scatter plot

from numpy.random import seed

from numpy.random import randn

from matplotlib import pyplot

seed the random number generator

seed(1)

first variable

x = 20 * randn(1000) + 100

second variable

y = x + (10 * randn(1000) + 50)

create scatter plot

pyplot.scatter(x, y)

show line plot

pyplot.show()

IJSER

http://www.ijser.org/
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

International Journal of Scientific & Engineering Research Volume 10, Issue 12, December-2019 434
ISSN 2229-5518

IJSER © 2019

http://www.ijser.org

Running the example creates the scatter

plot, showing the positive relationship

between the two variables.

Example of a Scatter Plot

CONCLUSION

Data visualization is the process of

representing data in a graphical or pictorial

way in a clear and effective manner. It has

emerged as a powerful and widely

applicable tool for analyzing and

interpreting large and complex data. It has

become a quick, easy means of conveying

concepts in a universal format. It must

communicate complex ideas with clarity,

accuracy, and efficiency. These benefits

have allowed data visualization to be

useful in many fields of study.

REFERENCES:

1. https://www.simplilearn.com/data-

visualization-in-python-using-

atplotlib-tutorial

2. https://www.edureka.co/blog/needs

-and-benefits-of-data-visualization/

3. https://towardsdatascience.com/intr

oduction-to-data-visualization-in-

python-

89a54c97fbedhttps://www.cs.uic.edu/
~kzhao/Papers/00_course_Data_visuali
zation.pdf

Usha Manjari Sikharam received a

degree in M.Tech Computer Science

and Engineering from university of

JNTUH and currently working as

Assistant Professor in Sreenidhi

Institute of Science and Technology.

Research interest includes parallel

Computing, Big Data, Python

programming, R Programming and

Data Visualization.

IJSER

http://www.ijser.org/
https://www.simplilearn.com/data-visualization-in-python-using-atplotlib-tutorial
https://www.simplilearn.com/data-visualization-in-python-using-atplotlib-tutorial
https://www.simplilearn.com/data-visualization-in-python-using-atplotlib-tutorial
https://www.edureka.co/blog/needs-and-benefits-of-data-visualization/
https://www.edureka.co/blog/needs-and-benefits-of-data-visualization/
https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed
https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed
https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed
https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed
https://www.cs.uic.edu/~kzhao/Papers/00_course_Data_visualization.pdf
https://www.cs.uic.edu/~kzhao/Papers/00_course_Data_visualization.pdf
https://www.cs.uic.edu/~kzhao/Papers/00_course_Data_visualization.pdf

